1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
| import random import torch from torch.utils.data.dataloader import DataLoader
true_w=torch.tensor([2.2,3]) true_b=torch.tensor([-1.9]) num_examples=2500 batch_size=50 epoch=100 learning_rate=0.01
w=torch.normal(0,0.01,true_w.shape,requires_grad=True) b=torch.zeros(true_b.shape,requires_grad=True)
def SyntheticData(w,b,num_examples): X=torch.normal(0,1,size=(num_examples,len(w))) y=torch.matmul(X,w) + b y+=torch.normal(0,0.01,y.shape)
return X,y.view(-1,1)
def DataIter(batch_size,features,labels): num_examples=len(features) indices=list(range(num_examples))
random.shuffle(indices) for i in range(0,num_examples,batch_size): batch_indices=torch.tensor( indices[i:min(i+batch_size,num_examples)] ) yield features[batch_indices],labels[batch_indices]
def LinReg(X,w,b): return torch.matmul(X,w)+b
def SquaredLoss(y_hat,y): return (y_hat-y.view(y_hat.shape))**2/2/batch_size
def sgd(params,lr,batch_size): with torch.no_grad(): for param in params: param-=lr*param.grad param.grad.zero_()
features,labels=SyntheticData(true_w,true_b,num_examples)
def Train():
for i in range(epoch): e_loss=[] for X,y in DataIter(batch_size,features,labels): out=LinReg(X,w,b) l=SquaredLoss(y,out).sum() l.backward() sgd([w,b],learning_rate,batch_size)
e_loss.append(l.item())
print(f"{i+1},loss:{sum(e_loss)/num_examples}")
Train()
x=torch.tensor([108,2.666]) print(true_w,w) print(true_b,b) print(LinReg(x,true_w,true_b).item()) print(LinReg(x,w,b).item())
|